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Abstract

Graphical models trained using maximum
likelihood are a common tool for probabilistic
inference of marginal distributions. However,
this approach suffers difficulties when either
the inference process or the model is approx-
imate. In this paper, the inference process is
first defined to be the minimization of a con-
vex function, inspired by free energy approx-
imations. Learning is then done directly in
terms of the performance of the inference pro-
cess at univariate marginal prediction. The
main novelty is that this is a direct minimiza-
tion of empirical risk, where the risk measures
the accuracy of predicted marginals.

1 Introduction

This paper concerns the learning and inference of
marginal distributions. In inference, some vector y
is observed, and the goal is to approximate univariate
marginals p(z;|y) for some true (unknown) distribu-
tion p, and some hidden, discrete vector x. A typical
approach to this problem is to fit the parameters of
a graphical model to approximate p(x|y) with some
distribution ¢(x|y) using the maximum (conditional)
likelihood criterion. Then, in inference, a marginaliza-
tion algorithm is used to compute q(z;|y)-

This approach is often well-justified— given a correct
model, ¢(x|y) will converge to p(x|y) in the high data
limit. If exact marginalization is possible, the esti-
mates g(x;|y) will also converge to the true marginals.
However, in practice there are often two major prob-
lems.

1. Computational Intractability. In general, ex-
act inference is intractable in graphical models
with high treewidth (such as “grids”), forcing the

use of approximate algorithms. For undirected
models, where maximum likelihood learning al-
gorithms require repeated inference, learning will
also be intractable. (Maximum likelihood learn-
ing of a directed model is usually tractable, even
when inference is not.) Even if exact learning is
feasible, it is unclear if the results are the best,
under approximate inference.

2. Model Defects. Usually in practice, the model
is not exactly correct. (That is, the set of condi-
tional independencies asserted by the graph are
not exactly true, or the parametrization of in-
dividual factors is imperfect.) This means the
parameters cannot converge to the “true param-
eters”, since the true distribution is not repre-
sentable. It is known in this case that maximum
likelihood learning will converge to representable
distribution with minimum KL-divergence to the
true distribution. This is different from the dis-
tribution that gives the best predicted marginals,
even assuming exact inference.

This paper seeks to ameliorate both of the above is-
sues. This is done by, first, fixing the inference step
to be a (presumed tractable) minimization of a con-
vex function. The learning step then consists of fitting
the parameters of that function such that the perfor-
mance of the inference process at marginal prediction
is best. Specifically, this paper suggests learning the
parameters of some function F(y, {b.(x,)}). For any
observation y, F' must be convex over the set of local
“pseudomarginals”, or “beliefs” {b,(x;,)}.

Since F is convex over {b.(x,)}, it is nothing more
than an implicit mapping from observed variables to
beliefs. Thought of as a mapping, it is natural to think
that the parameters of F' could be adjusted to align
these predictions with training data. It turns out that
this is true, and moreover, the agreement between pre-
dictions and true values can be quantified in terms of
a user-specified loss function. This is the real advan-



tage of this approach— in learning, the parameters are
directly fit to give good marginal predictions, as spec-
ified by the loss function. However, a consequence is
that only a mapping is learned. The approach is not
equivalent to approximating the conditional distribu-
tion p(x|y). Nevertheless, predicted marginals are all
that are needed for many problems, and experiments
suggest this approach can give good results in this case.

2 Inference

This paper is based on minimizing a class of convex
functions F' motivated by free energy approximations
(see Section 4).
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F is a set of convex functions of local beliefs. A typ-
ical example would be the identity function and the
negative entropy function (i.e. F = {b,blogb}). How-
ever, in principle, any function that is convex over the
interval (0,1) may be used.

R is a set of regions. For example, set of of indices of x
in the regions might be the union of the set of cliques
C and the set of individual indices 7.

The “weighting” functions wy determine the behavior
of F. Fitting the model corresponds to fitting these
weighting functions.

Given some observation y, the beliefs are given by min-
imizing F'.

{b:(xr)} = arg {bfr(l}lil)} F(YJ {br(xr)}) (2)

This function needs to be minimized subject to some
constraints. In this paper, the beliefs will be con-
strained to be “locally consistent”. If again the regions
are cliques C and individual indices Z, the constraints
are:

!By a slight abuse of notation, x, and y, denote “the
variables of x in region 7”; and “the variables of y in region
r”, respectively. So, for example, some region might contain
only a single variable of x, but multiple variables of y.
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Since each function in F is assumed to be convex,
F will also be, provided that the weighting functions
wy are positive. (The weights for the linear function
f(b) = b need not be constrained). Since the con-
straints are also convex, this is a convex optimization
problem.

It is typical to solve problems like this through the
use of “message passing” algorithms. However, in this
paper, a more abstract representation will be conve-
nient. Briefly, it is not hard to see that it is possible
to transform the problem into the form

b* = argmin ) | w(y)" f(b) ®)
feF

Ab=d
b > 0.

such that

Here, the symbol b is reused (in boldface) to denote
a vector containing all beliefs b,(x,) for all regions r
and configurations x,. Similarly, w(y) represents the
vector of weights w(x,,y,) for all regions and config-
urations. To avoid confusion, boldface (b or w¢(y))
will always be used when referring to the formulation
in Eq. 8, while non-boldface (b,(x,) or w;(x,,y.))
when referring the the original formulation in Eq. 1.

It is easy to see that each of the three linear constraints
(Egs. 3, 4, and 5) can be handled by setting one row
of A and one entry of d.

3 Learning

The weighting functions wy, are assumed to depend
on some parameters 6. Thus, learning consists of fit-
ting 8. Now, a loss function needs to be specified to
quantify the performance of the predicted marginals.
Take a set of samples {(X,y)} drawn from some true
(unknown) distribution p(x,y). Broadly speaking, we
would like that the marginals produced by the mini-
mization of F' “tend to match” those of p. Two ways to
quantify this are the univariate “log-loss” and “quad-
loss”.



3.1 Log-loss

Suppose that we would like to minimize the sum of
expected KL-divergences between the true marginals,
and those produced by the convex optimization. Thus,
we would like to choose F' by minimizing the “risk”

F* = argm}n ;p(}’) ; ;p(IZW) log %
9)

Here, b} (z;]y, F) denotes the belief obtained for vari-
able i by minimizing F' on evidence y. Of course, p is
unknown, and so the true risk cannot be minimized.
Instead, one can attempt a Monte-Carlo estimate of
the true risk, and minimize the “empirical risk”.

F* =argmin — Zy:p(y) Z ;p(ﬂcily) log b} (x:]y, F)

(10)
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Statistical learning theory studies the conditions un-
der which the approximation represented by Eq. 12
converges in the infinite data limit to that of Eq. 11.
However, this paper will not address this.

Now, in general, the minimum in Eq. 12 is found by
optimizing with respect to some parameters of F. Con-
sider the derivative of L,y with respect to some pa-
rameter 6; of F.
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The issue of how to calculate 0bf (Z;|y,
addressed below.

Kakade et al. (2002) introduced a learning criteria
equivalent to Lio,, and an optimization method for
the case of exact inference.

3.2 Quad-loss

An alternative criterion would be to try to mini-
mize the expected squared difference between the true
marginals and the estimated marginals.

P = argm;nzp()’) Z > wlily) = b; (zily, F))

(14)

Again, this true risk can be approximated with an em-
pirical risk.

F* = argmin (15)
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Notice that the second term in Eq. 16 does not depend
on the observed data {x}.

Again, it is not hard to calculate the derivative of
Lguaq with respect to some parameter 6; of F.
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3.3 Derivatives of Beliefs

The above discussion assumes that it is possible to
calculate the derivative of the beliefs with respect to
the parameters of F. (Recall that the weights wy are
parameterized by some vector 0.) These derivatives
are not obvious, given that the beliefs are determined
only implicitly by the minimization of F. To calculate
them, it is first necessary to establish two claims.

Claim 1: Let F(b,0) be a continuous function such
that for all 8, F' that has a unique fixed point in b.

Define b*(8) such that W = 0. Then,
ob*(8) _(82F(b*(0), 0))—1 0?F(b*(6),0)
09, ObobT oboo; -

This claim is essentially a restatement of the (multi-
variate) Implicit Function Theorem. Here 82?% de-
notes the matrix of second partial derivatives of F’ with
respect to the elements of b. Similarly, % denotes
the vector of partial derivatives of 0F/06; with re-
spect to the elements of b. Finally, 0b*/06; denotes
the vector of derivatives of the elements of b*, all with
respect to 6.

This result is not quite adequate to get the derivatives
of beliefs, because it does not consider the constraints.



In the following claim, the argument of (b*(0),0) to
F is dropped for space.

Claim 2: Define b*(0)=argminy F'(b, 8), such that
Ab = d for some convex function F. Then,

ab*(e) —1 AT —1 4T\—-1 —1 —1 a2F
=(D A" (AD™ A AD " —D
90 ( ( ) )abaaj
where D = ( abaET)

A proof is in the appendix. Essentially, the proof con-
sists of augmenting the set of variables with a vector of
Lagrange multipliers to enforce that Ab = d, and then
applying Claim 1 to the full set of variables {b, A}.
(See below for the constraint that b > 0.)

For the function of interest in this paper, use the for-
mulation of F in Eq. 8.

(8271?)
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f
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Here, ® denotes element-wise multiplication, and f”
denotes the second derivative of f. Notice that by
virtue of being diagonal, inverting D is trivial and only
consists of inverting each entry.

The last term in Claim 2 is also easy to calculate.

oF ow(y)
oboo; - 06

o f (19)

Finally, the partial derivatives Ow¢(y)/00; are deter-
mined directly by dwy(xc,y.)/90;. The exact form,
of course, depends on the way in which the weighting
functions w¢(x.,y.) are parametrized. In the common
case where each of the weighting functions is fully and
independently parametrized,

(9’LUf(XC, YC) /
5 =0(f=f %=
90 x.y1)

X/ca Ye = y/c)a
and so the derivatives Ow(y)/06; are sparse, binary
vectors.

The above discussion did not consider the constraint
b > 0. For the functions F used in this paper, it
is easy to show that if b* = argminy, f(b,0), then
b* > 0. (This is established by forming the Lagrangian
enforcing Ab = d (Eq. 28) and taking the gradient
with respect to b, which must be zero.)

4 A Free Energy Justification

Suppose there is some true distribution over variables
x and y, where each variable is independent of all other

variables, given some set of neighbors. Then, by the
Hammersley Clifford theorem, the joint distribution
can be represented by

1
p(X7 y) = E exp(z E(x07 yc))a (20)
where the sum is over the set of all cliques ¢ in the
neighborhood graph. It follows that the conditional
distribution can be written as a “Conditional Random
Field” (Lafferty et al., 2001), i.e

pxy) _ 1
pldly) = =5 = 713 exp(zc: E(xc,yc)), (21)
where Z(y) = >, exp(>_. E(X¢,yc)). Notice that if

there are any cliques that contain only variables in y,
they can be dropped from Eq. 21.

Now, consider inference. Some vector y is observed,
and we are interested in the conditional distribution
induced over x. One approach is to minimize the KL-
divergence between some distribution b(x) and p(x|y).

b(x)

b"(x) = arg min Z b(x) log > (X|y) (22)

=arg rmn Z b(x) log b(x (23)
—Zbe (Xey Ve —i—Zb )log Z(y

=arg mln Z b(x) log b(x (24)
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The second term in Eq. 24, called the average energy,
can be computed exactly. However, the first term,
known as the entropy, is generally too expensive to
compute exactly. In fact, even to represent an arbi-
trary distribution b(x) will be impossible when the di-
mension of x is large. The typical way out of this diffi-
culty is to represent only local marginal distributions,
and then to approximate the entropy with a Bethe or
Kikuchi approximation (Yedidia et al. 2005). One such
approximation would be that

Zb( chbec log b(x.)

ceC Xc

+ Z n; Z b(x;)logb(x;),

i€l z;

) log b(x
(25)

for appropriate “counting numbers” n. and n; chosen
for each clique and variable, respectively. Specifically,
the Bethe approximation consists of choosing n. = 1,



and n; is 1 minus the number of cliques in which node
i is contained, i.e. n; =1 — |{c: i € c}|. More sophis-
ticated approximations consider different regions and
different counting numbers.

For a singly-connected graph, the Bethe approxima-
tion is exact. For general graphs, it is not always clear
what choice of counting numbers will result in a good
approximation to the entropy or (more importantly)
accurate estimated marginals.

The constraints given in Section 2 (Egs. 3-7) are, in
general, a convex relaxation of the “marginal poly-
tope”. In general, given a set of local marginal dis-
tributions {b,(x,)}, no global distribution b(x) that
satisfies them all (Yedidia et al. 2005). In order to
guarantee that a global distribution exists, one must
impose a number of linear constraints, yielding a poly-
tope (Wainwright and Jordan 2003). However, for
graphs with high treewidth, the number of constraints
is very large, which motivates only enforcing a subset
of the constraints. (The local consistency constraints
are exact in the case of a tree-structured graph.) This
can be a problem since the KL-divergence justifica-
tion given above assumes that the minimization is over
valid distributions b(x). There will usually exist a set
of inconsistent marginals that have a lower estimated
KL-divergence than any true distribution, resulting in
less accurate predictions.

The above discussion motivates learning the parame-
ters from data. Rather than attempting to approxi-
mate the true F(x.,y.) (if any), and the true entropy,
one could fit the parameters to give the best predicted
marginals, in light of the relaxation to the marginal
polytope, as well as any model defects. This would
suggest fitting F(x.,y.), as well as n. and n;, where
the mapping from the observation y to the predicted
marginals are given by

{br} = arg ?;}I}l Z Z —be(xc) E(Xc, ye) + (26)
D ne > be(xe)logbe(xe) + Z ni Y bi(w)log b(x;).

In this paper, this is generalized by, rather than taking
a constant counting number (n. or n;) for each region,
taking a weight that is allowed to depend on y. and
X.. This is not suggested by the free energy approxi-
mation, but the experiments below suggest it can en-
able a more accurate approximation of the marginals.
Second, rather than just taking terms with b or blogb,
consider arbitrary convex functions of the beliefs. This
results in the form for F' introduced above,

{b:} = argr{%.‘r}l Z Z wa(xrv}’r)f(b(xr))' (27)
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Table 1: Test errors with 30% noise. (All per pixel)

Method\Error | Classif. Regress. Liog Lquad
Pseudo.+M.F.| 0.0475 0.0445 0.2705 -0.9109
Pseudo.+B.P. | 0.0495 0.0425 0.2109 -0.9149
Mean Field | 0.0300 0.0265 0.1265 -0.9470
Belief Prop. | 0.0373 0.0314 0.1393 -0.9371
Liog 0.0261 0.0201 .0694 -0.9598
Lguad 0.0260 0.0201 .0723 -0.9598

Table 2: Test errors with 50% noise. (All per pixel)

Method\Error | Classif. Regress. Liog Lquad
Pseudo.-+M.F.| 0.0954 0.0920 0.6291 -0.8161
Pseudo.+B.P. | 0.0977 0.0866 0.5056 -0.8268
Mean Field | 0.0751 0.0668 0.3030 -0.8663
Belief Prop. | 0.0783 0.0671 0.3039 -0.8658

Liog 0.0575 0.0417 0.1384 -0.9165

Lyuad 0.0561 0.0414 0.1428 -0.9172

This is also less general than normal free energy ap-
proximations, in the sense that the weights for the
f = blogb term are constrained to be positive, while
counting numbers can be negative.

5 Experiments

As a basic test of this approach, the algorithm was
used to learn to “denoise” binary images of hand-
written digits from the MNIST database. Ten images
of the digits 1-9 were randomly selected for training
and testing datasets. Each of the images was then
subjected to various amounts of noise. For example,
10% noise means that each pixel has a 10% chance of
being assigned randomly. The noisy images make up
the observed vectors y, while the original images make
up the hidden vectors x.

The model uses regions consisting of individual nodes
of x and y at the same location, and pairs of neigh-
boring nodes, also at the same locations. The same
weights were used for horizontal and vertical regions.
The weights were not constrained to be symmetric.

The PDCO primal-dual interior method? was used to
optimize F. Since the functions f are twice differen-
tiable, the full (diagonal) Hessian can be calculated in

*www.stanford.edu/group/SOL/software/pdco.html

Table 3: wyiogs(Xe,¥e) and wyiogs(wi,yi) for Lauaa
with 50% noise
Xc\Yc (an) (071) (170) (171)

(0,0) [486 0.04 0.05 0.02][z\y;] 0 1
(0,1) [4.22 386 4.54 5.00|] 0 |4.47 0.02
(1,0) | 4.13 449 214 513|| 1 |0.03 0.03
(1,1) [0.06 0.02 0.03 0.02
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Figure 1: Various measures of accuracy for the six compared methods, with 50% noise.
mentation® of Vishwanthan et al. (2006). The fea-
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Figure 2: Example results with 50% noise. Top row:
Randomly chosen noisy input images of the digits
1-9 from the test set. Second Row: Results from
Pseudo.+B.P. Third row: Results from Belief Prop.
Fourth Row: Beliefs from convex inference with Liog
learning. Bottom row: Original images without noise.

closed form.

The method prosed here was used, with both loss
functions Ligg, and Lquad, using the set of functions
F = {b,blogb}. The weighting functions are fully
parametrized.

Using the results of Section 3 and the “inner-loop” opti-
mization of F' above, it is possible to compute empiri-
cal risk > oy L ajnd. its. gradient > 5y, OL/06.
An “outer-loop” optimization can use these compu-
tation to minimize the empirical risk. Experimen-
tally, small numerical fluctuations in the inner loop
can cause instability in the overall optimization. To
reduce this, the tolerances on the optimization over F'
were set very conservatively. Then, a quasi-Newton
method (BFGS) was used for the outer optimization.

All weights for the b and blogb terms are initialized to
0 and 1, respectively. First, 100 iterations are taken,
with the weights wp10g4 frozen to one, and then an-
other 100 iterations are taken for all weights. This
heuristic seems to somewhat improve convergence.

These models are compared against the CRF imple-

tures for individual nodes were a constant, and binary
variables corresponding to all the possible values of y;
at the same location. In the notation of that paper,
h; = [1,0(y; = —1),0(y; = +1)]. The edge features are
similar— a constant, as well as binary features corre-
sponding to each of the four possible configurations of
the noisy pixels at the same locations. Four CRF ap-
proaches were considered: Pseudolikelihood learning
with mean field or belief propagation inference, and
mean-field and belief-propagation?, using those algo-
rithms to approximate marginals for learning and then
again for inference. The BFGS method was used for
optimization. If the inference method failed to con-
verge after 10,000 iterations, it was stopped at that
point.

The approaches are evaluated with four different met-
rics: the losses Lioy and Lguad, the “classification er-
ror”, and the “regression error”. Classification error
measures the performance in the case that a single pre-
diction (0 or 1) needs to be made for each pixel. (This
is done by choosing the value with the highest com-
puted marginal probability.) The classification error
is the fraction of predictions that are incorrect. Re-
gression error measures the performance of the model
at predicting expected values. The error is the sum of
squared differences (#; — b*(x; = 1|y))2. Notice that
this is different from Lqyad, 8 Lquad tries to measure
the squared difference of marginal probabilities.

Tables 1 and 2 give the test losses for 30% and 50%
noise. Figure 1 give a graphical representation of the
errors for 50% noise. Here, learning to minimize the
losses Liog and Lguaq in general perform quite similarly
(though each does a slightly better job of minimizing
its own loss.) In general, these significantly outperform
learning and inference with belief propagation, which
in turn outperform pseudolikelihood based learning.
Figure 2 gives example outputs where the output be-

3www.cs.ubc.ca/ " murphyk/Software/CRF /crf. html
“In all cases, “belief propagation” refers to the sum-
product formulation.



liefs are visualized with a greyscale intensity.

An interesting question is if allowing the weighting
function for the entropy term to vary over the con-
figurations (as opposed to a constant counting num-
ber) improves predictions. Table 3 shows the values
found for 50% noise. In this particular case at least,
the values are highly variant over the configurations,
suggesting that this flexibility is helpful.

6 Related Work

The basic idea that when approximate inference must
be used, the learning process should be cognizant
of this has been suggested several times. Domin-
gos (2007) suggested “Deep Combination of Learning
and Inference” as one of the most important problems
problems of the next ten years.

Specific related work demonstrating this principle in-
cludes Wainwright (2006) on the value of an incon-
sistent estimator in the context of approximate infer-
ence. This paper creates a tractable surrogate to the
entropy. This same surrogate is used for both learn-
ing and inference in such a way that the errors of the
two processes can cancel each other to some degree —
the approximate inference algorithm run on the pa-
rameters resulting from the surrogate likelihood can
perform better than the algorithm run on true param-
eters.

Another related area of work is known as “Structured
Learning” (Taskar et al., 2004). This is oriented to-
wards MAP inference, rather than marginalization,
and is focused on model defects— the objective max-
imized is given directly in terms of the the maxima
of the model, rather than an indirect measure such as
the likelihood. Structured learning usually does not
focus on computational issues— in a general graph the
MAP estimate remains difficult to find. Kulesza and
Pereira (2008) provide an analysis of these issues and
emphasize the importance of considering the inference
process in learning.

7 Discussion

Classifiers are often learned by minimizing a loss func-
tion closely related to empirical risk. Conversely,
graphical models are usually learned by optimizing
scores (e.g. the likelihood) rather remote from the
performance of the system in the inference stage.
This paper presents an approach for learning to infer
marginals through a direct minimization of empirical
risk, where the risk measures the difference between
the true marginals and the marginal predictions of the
inference process.

There are several open questions, and promising areas
for future research.

In some cases, the marginal beliefs will be used only to
predict the maximum probability value for each vari-
able. In such a case, a loss function that penalizes the
resulting “labelwise” classification errors (Gross et al.,
2007) could be more appropriate than the losses used
here.

One advantage of this approach is that essentially the
same learning algorithm could be used in the presence
of hidden variables. If there are some xz; that are not
observed, the sum over the variables in Ligg or Lguad
can simply be taken over the observed variables. This
is potentially a significant advantage, since maximum
likelihood learning of graphical models requires more
advanced methods in the presence of hidden variables.

It is not clear the degree to which constraining the
weights for the f = blogb to be positive term harms
the flexibility of the model. One could possibly get
more flexibility by only constraining F' to be convex
over the set of locally consistent marginals, rather than
all marginals as done here (Heskes, 2006).

Another possible improvement would be to impose
tighter bounds on the marginal polytope than local
consistency (Sontag and Jaakkola, 2008), both in the
learning and inference step.

Though the generic optimization method used here is
reasonably fast, it may be possible to minimize F more
efficiently by deriving a message passing algorithm.

Finally, future work could consider generalizing the
function F'. Provided that F' is convex and continuous,
the results from Section 3.3 will enable learning.
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A Proof
Claim 2: Define b*(0)=argminy F'(b, 8), such that

Ab = d for some convex function F. Then,

ob*(8)
06,

0?F

_ (-1 4T —1AT\-1 4 —1_ -1
=(DA"(AD""A")""AD D )6b89j’

2
where D = (aga%).

Proof of Claim 2: First, create a Lagrangian, en-
forcing the constraint.

L(b,0) = F(b,0) + AT (Ab — d). (28)

Now, apply Claim 1 to the function £ with respect to
variables b and 6. This gives the system

b 2L 9L \T _1, 0°L
00; | _ _ (abBbT ) (abaz)\T ) 0bob;
oA | T ( 9L ) 9°L ) 9L

09, ObOAT OXNOAT XY,

(29)

The first submatrix of second partial derivatives is the
same as those for the unconstrained system.

(L OF
obab”’ ~ \9bobT

)=D (30)
The other two matrices are constant.

2L 0?L

—~ " VY=A i
(8b6AT) (aAa,\T

)=0 (1)

The first derivatives are also easy to calculate.

0L 0*F 0L
0bdf;  0bob; 00,
Substituting all this yields the system
0Ob T -1 8°F
o0, |_ _[D A bde;
[g%j}— L4 ol [Tl e

It is possible to recover % directly from this equation.
J

However, the form derived below can be significantly
faster.

Now, consider the inverse of the above matrix. If its
entries are X,Y, Z and U, by definition it satisfies

R A RIS ACD

Two of the four identities that follow directly from Eq.
34 are

DX +ATZ =
AX = 0. (36)

~
—
w
(%
=

Solving Eqgs. 35 and 36 for X gives

X=D"'-DAT(AD'AT)"'AD™!.  (37)

The claim follows from the observation that g—g’j =
8*F
-X 9bo0, 0



